RETENTIVE SYSTEMS FOR
IMPLANT-BORNE HYBRID DENTURES

Straumann® Soft Tissue Level Implant Line
The ITI (International Team for Implantology) is academic partner of Institut Straumann AG in the areas of research and education.
CONTENTS

Instructions for dentists and dental technicians

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planning principles</td>
<td>2</td>
</tr>
<tr>
<td>Recall appointments</td>
<td>2</td>
</tr>
<tr>
<td>Bar-borne restorations</td>
<td>3</td>
</tr>
<tr>
<td>Introduction</td>
<td>3</td>
</tr>
<tr>
<td>Fabrication of an implant-borne bar in the lower jaw using the synOcta® prosthetics system</td>
<td>6</td>
</tr>
<tr>
<td>Fabrication of cast and laser-welded bars</td>
<td>19</td>
</tr>
<tr>
<td>Fabrication of the definitive bar prosthesis with metal reinforcement</td>
<td>23</td>
</tr>
<tr>
<td>Modification of an existing full lower denture in an implant/bar-borne hybrid denture</td>
<td>25</td>
</tr>
<tr>
<td>Relining an implant-borne bar denture</td>
<td>27</td>
</tr>
<tr>
<td>Retentive anchors</td>
<td>29</td>
</tr>
<tr>
<td>Introduction</td>
<td>29</td>
</tr>
<tr>
<td>Fabrication of a new full lower denture with a metal reinforcement and two Elliptical matrices</td>
<td>30</td>
</tr>
<tr>
<td>Fabrication of a new full lower denture with metal reinforcement and two titanium matrices</td>
<td>35</td>
</tr>
<tr>
<td>Modification of an existing full lower denture in an implant-borne retentive anchor denture</td>
<td>41</td>
</tr>
<tr>
<td>Relining of an implant-borne retentive anchor denture</td>
<td>44</td>
</tr>
<tr>
<td>LOCATOR®</td>
<td>47</td>
</tr>
<tr>
<td>Introduction</td>
<td>47</td>
</tr>
<tr>
<td>Using plan LOCATOR® abutments</td>
<td>48</td>
</tr>
<tr>
<td>Fabrication of a new full denture</td>
<td>49</td>
</tr>
<tr>
<td>Modification of an existing lower full denture into a denture fixed on LOCATOR® abutments with simultaneous relining</td>
<td>51</td>
</tr>
<tr>
<td>Modification of an existing lower full denture into a denture fixed on LOCATOR® abutments in the patient’s mouth</td>
<td>53</td>
</tr>
<tr>
<td>Product overview</td>
<td>58</td>
</tr>
<tr>
<td>Titanmagnetics®</td>
<td>61</td>
</tr>
<tr>
<td>Introduction</td>
<td>61</td>
</tr>
<tr>
<td>Fabrication of a full lower denture with two Titanmagnetics®</td>
<td>63</td>
</tr>
<tr>
<td>Modification of an existing full lower denture on an implant-borne magnetic denture</td>
<td>68</td>
</tr>
<tr>
<td>Relining of an implant-borne magnetic denture</td>
<td>70</td>
</tr>
</tbody>
</table>
PLANNING

Planning principles
Implant-borne full dentures require thorough planning of the surgical and technical procedures. The number and positions of the implants as well as the design of the denture and occlusion should take account of the anatomical, functional and hygienic aspects. The static/dynamic conditions govern the selection of the retentive units (Besimo, 1993).

Magnet and bar retention systems for implant-borne lower hybrid dentures subject the implant abutments to the lowest stress (Jäger and Wirz, 1993).

Recall appointments
Hybrid dentures with resilient retention units must be examined at intervals of approximately 3 months to ensure harmful excursions of the denture are eliminated in their early stages (possible methods: relining, activating/replacing the matrix, checking the occlusion).

In cases of poor oral hygiene, the patient should undergo thorough scaling and polishing, as well as reinstruction and motivation to maintain the necessary high level of oral hygiene. If the patient is co-operative, the interval between check-ups can be increased.
BAR-BORNE RESTORATIONS

Introduction
The functions of a bar restoration:

- Stabilisation and primary splinting of implants
- Countering the forces that would dislodge the denture
- Distribution of shear forces
- Resilience compensation through degrees of freedom

Description/Functioning
Most common types of bar:

*Dolder® bar (egg-shaped cross-section), normal and mini versions
The Dolder® bar is a retention unit allowing three degrees of freedom (translateral and rotary movements).

Dolder® bar attachment, “U”-shaped cross-section
The bar attachment is a rigid retentive unit with no rotational freedom.

Round bar
The round bar is a retention unit permitting only one degree of freedom (translateral movements).

*Dolder® is a registered trademark of Prof. Eugen Dolder, formerly director of the School of Dentistry at the University of Zurich.
The following guidelines must absolutely be heeded when fabricating implant-borne hybrid dentures

Freedom

“If riders are placed on more than one bar segments, the denture is retained, but has no degree of space freedom regardless of the cross-section of the bar” (Wirz, 1994).

“If a rider is placed on the anterior-most bar segment only, a round bar creates 1 degree of space freedom, an egg-shaped cross-section 3 degrees of freedom and a bar attachment (or milled bar) no freedom” (Wirz, 1994).

Bar positioning

The anterior bar is positioned perpendicular to the median line of the two halves of the alveolar ridge (Wirz, 1994).

The bar must be horizontal – even if the ridge varies in height. The bar must never be allowed to slope as this would impede the correct functioning of the bar attachment and create undesirable horizontal forces (Wirz, 1994).
Planning the bar restoration

Primary loading of the implant or fabrication of the restoration once the healing period has elapsed

“If full lower dentures are to be retained on Straumann dental implants, the following basic principle applies: Four implants are required if in the early period after implantation, for any reason whatsoever, the implant abutments are to be loaded with a denture before osseointegration has been completed. This is often useful when one-part implants are used, as the conditions of the temporary restoration are usually very unfavourable. In such cases, it is imperative that the four implants are splinted with a bar.

When used in the linear and front areas only, the Dolder® bar joint, with its three different degrees of space freedom, loads the abutments least of all regardless of the number of abutments. If, however, the abutments are spaced regularly in the anterior region, and the denture is retained on all bar segments using several riders – regardless of the cross-section of the bar – the dynamics of the denture are lost completely. This is a purely rigid type of retention with no freedom whatsoever. If we are able to allow at least three months for osseointegration of two-part implants – which should usually be the case – we may limit ourselves to two relatively short implant abutments, assuming that the masticatory forces are absorbed by the denture bed and not by the implant site” (Wirz, 1994).
Fabrication of an implant-borne bar in the lower jaw using the synOcta® prosthetics system

“Patient” – initial situation
Edentulous lower jaw, with 4 two-part Straumann dental implants in positions 44–34.

Important: The synOcta® abutments can only be used in combination with implants with the internal octagon.

Impression-taking with synOcta® prosthetics
Two versions are available for the impression procedure: the “snap-on” version and the “screw-retained” version. The snap-on version can be regarded as the standard and can be used in the majority of cases. The screw-retained version is particularly indicated where the implant shoulder lies very deep.

In order to prevent any risk of confusion, the transfer system is colour-coded. The positioning cylinder, analog and screw-retained impression cap are colour-coded red in the synOcta® prosthetic system.
A. “Snap-on” impression procedure

All parts of the transfer system are supplied non-sterile. They can be disinfected, as required, using standard commercial disinfectants for plastic products. (Please follow manufacturers’ directions).

Caution: The plastic parts are designed for single use only. They must not be sterilised in the autoclave.

To prevent damage to the plastic components (loss of elasticity, embrittlement), they must be protected from heat and light.

The implant shoulder and interior must be thoroughly cleaned prior to the impression procedure. The impression cap (048.017V4) is pushed onto the implant until the shoulder clicks into place. The impression cap is turned gently in order to check that it is in the correct position. When the cap is in the correct position, it can be rotated on the implant.

Important: Due to its insufficient tensile strength and inadequate elastic recoil, hydrocolloid is not suitable for this application.

The octagon on the positioning cylinder must be aligned with the internal octagon on the implant and be inserted into the impression cap until it is flush with the top of the impression cap.

The impression should be taken using an elastomeric impression material (polyvinylsiloxane or polyether rubber).
B. “Screw-retained” impression procedure

A special tray with perforations is required for this application.

The implant shoulder and interior must be thoroughly cleaned prior to the impression procedure.

The impression cap (048.010) is placed on the implant and is tightened with the integral positioning screw. Precise positioning of the octagon of the impression cap into the octagon of the implant is important. Should only a limited amount of space be available, the occlusal aspect of the cap can be reduced by one retention ring (once the positioning screw has been removed).

Important: Only the integrated screw must be used! The margin and octagon must not be damaged in order to prevent any errors during the transfer process. For this reason, the impression caps are for single use only.

The impression should be taken using an elastomeric impression material (polyvinylsiloxane or polyether rubber) in accordance with the manufacturer’s directions.

Once the material has set, the positioning screws are loosened, and the impression is removed.

Important: Due to its insufficient tensile strength and inadequate elastic recoil, hydrocolloid is not suitable for this application.

After impression-taking, the healing caps are repositioned on the implants.
Fabricating the master cast

The “snap-on” version
The red positioning cylinder shows the dental technician that the analog with the red marking that must be used. In the laboratory, the analog (048.124) is repositioned in the impression, and the shoulder must click audibly into place.
The analog must not be rotated in the impression.

The “screw-retained” version
The analog is secured in the impression using the integral positioning screw. The red impression cap shows the dental technician that the analog with the red marking that must be used.

Important: When tightening the screw, grasp the retentive section of the analog in order to prevent the impression cap from rotating. This is especially important if the cap has been shortened.
Fabricating the working master cast in the conventional way using Type 4 plaster.

The RN synOcta® 1.5 screw-retained abutment [048.601] is placed in the analog and aligned in the octagon. **N.B.: The abutment must be positioned in the octagon before the screw is tightened.**

The screw is hand-tightened using the SCS screwdriver.

RN = Regular Neck (Ø 4.8 mm)
Fabrication of the joint gold bar

The prefabricated gold coping bar for the synOcta® prosthetics system without an internal octagon (048.204) consists of a non-oxidising, high-melting alloy (Ceramicor; Au 60%, Pt 19%, Pd 20%, Ir 1%; melting range 1400–1490 °C, 2552°–2714 °F). It is screwed onto the analog/synOcta® abutment with the 4.4 mm SCS occlusal screw (048.350V4). The gold coping is 6.0 mm high and can be shortened 1.5 mm occlusal.

The individual bar segments are placed between the abutment units. Attention should be paid to the space between the bar and gingiva (min. 2.0 mm) to facilitate adequate cleaning and so prevent changes in the mucosa.

Important: To achieve a good joint, the gap should be as small as possible.
Type of joining
The prepared bar can now be soldered or laser-welded, as desired. A laser-assembled bar does not require soldering with non-precious ingredients and is therefore more biocompatible. Laser-welding takes place directly on the plaster model and therefore takes less work. Larger gaps are filled with wire made from the same type of material (see also page 22, Fabrication of laser-welded bars with titanium components).

Soldered gold bar
The gold copings and prefabricated bar segments are secured in place with a residue-free, burn-out plastic. The SCS occlusal screws must not be covered.

Tip: Overwaxing of the plastic compounds ensures good access of the flame later on in the soldering investment.

Once the SCS positioning screws have been loosened, the bar framework is carefully removed. Stabilisation pins (048.208V4) are available for retaining the RN synOcta® bar gold copings in the soldering investment and are screwed into place with the SCS positioning screws.

They ensure that the gold copings are anchored accurately in the soldering investment during soldering.
To prevent possible distortion of the bar due to uneven preheating with the flame, the hardened soldering investment is preheated to 500–600 °C, 932–1112 °F in a preheating furnace.

After the invested bar has been preheated, it is ready for soldering. Once soldering has been completed, the investment should be cooled to room temperature.

The bar must be devested and cleaned in an ultrasonic bath. The oxides and soldering flux residues are then removed in an acid bath.

Important: Due to the high precision of the prefabricated caps, increased caution is required during polishing. Therefore, under no circumstances, should a sandblaster be used.

Tip: To protect the margins, a polish protector (046.245) or an analog can be screwed on during polishing. This reduces the risk of damage to the margins. It is advisable to work under a stereo-microscope.
It must be possible to reposition the cleaned bar without tension on the analogs, without it being secured with the SCS occlusal screws when checking its fit.

Important: The SCS occlusal screws that were used for soldering will be extremely oxidised and must not be used to secure the bar in the mouth. The bar must be secured in place with new SCS occlusal screws.

The finished synOcta® bar on the plaster model.
Insertion of the bar construction in the mouth
The restoration is delivered to the dentist with the original abutments.

The healing caps are removed and the interior of the implant is thoroughly cleaned and dried.

The superstructure is removed from the master cast and the abutment is unscrewed from the analog.

Torque = 35 Ncm!

The cleaned RN synOcta® 1.5 screw-retained abutment is positioned without cement in the internal octagon. The abutment screw is tightened using the SCS screwdriver, ratchet (046.119) and torque control device (046.049).

N.B.: The abutment must be positioned in the octagon before the screw is tightened.

After osseointegration of the implants, we recommend a tightening torque of 35 Ncm when inserting the abutment screws.

The SCS occlusal screws are tightened with 15 Ncm on the RN synOcta® abutment.

The bar in situ with the new SCS occlusal screws.

See also CD-ROM “Straumann® Dental Implant System-Prosthetics”, Art. No. 150.538, “Hybrid dentures: Screw-retained bar construction on RN synOcta® 1.5 screw-retained abutment”
Varying the retention force of the bar matrix

Only the appropriate activator/deactivator may be used for activating/deactivating the bar matrix.

- To **activate** the matrix, press its walls together with the activator.
- To **deactivate** the matrix, press its walls apart with the deactivator.

Positioning the bar matrix

The matrix must make use of the entire length of the bar. This helps absorb horizontal forces better (Wirz, 1994).

Important: Placing the matrix should always be carried out with the spacer before fabrication of the prosthesis. This is the only way to ensure vertical translation of the prosthesis to the bar.
INITIAL SITUATION EDENTULOUS: BAR ON synOcta®

Type of bar: soldered/laser-welded gold bar

<table>
<thead>
<tr>
<th>Abutments and laboratory components gold copings</th>
<th>Instruments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion of abutment
RN synOcta® 1.5 screw-retained abutment, 048.601</td>
<td>SCS-screwdriver:
Length 15 mm: 046.400
Length 21 mm: 046.401
Length 27 mm: 046.402
and/or SCS screwdriver for handpiece adapter:
Length 20 mm: 046.410
Length 26 mm: 046.411
Length 32 mm: 046.412</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Impression procedure
Optional:
RN synOcta® impression cap with integral positioning screw 048.010</th>
<th>Laboratory handpiece 046.085 for 046.410/411/412</th>
</tr>
</thead>
<tbody>
<tr>
<td>or RN impression cap 048.017V4 with RN synOcta® positioning cylinder 048.070V4</td>
<td></td>
</tr>
</tbody>
</table>

| **Production of master cast**
RN synOcta® Analog 048.124
RN synOcta® Analog 048.108 (for bars with 048.601) | |

| **Production of superstructure**
RN synOcta® gold coping, bar, 048.204
Dolder® bar, egg-shaped cross-section, mini, 048.411
Dolder® bar matrix, mini, 048.413 incl. spacer
Dolder® bar, egg-shaped cross-section, standard, 048.412
Dolder® bar matrix, standard, 048.414 incl. spacer
Stabilisation pin, 048.208V4
SCS Occlusal screw, 048.350V4 | |

<table>
<thead>
<tr>
<th>Abutments and laboratory components gold copings</th>
<th>Instruments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion of final restoration</td>
<td></td>
</tr>
<tr>
<td>SCS Occlusal screw, 048.350V4</td>
<td>Activator set, 046.150</td>
</tr>
<tr>
<td></td>
<td>Deactivator, mini, 046.151</td>
</tr>
<tr>
<td></td>
<td>Deactivator, standard, 046.152</td>
</tr>
</tbody>
</table>

Bar Set Gold 040.195	
Contents:	
2x RN synOcta® 1.5 screw-retained abutment,	
048.601	
2x RN synOcta® analog, 048.124	
2x RN synOcta® gold coping, bar, 048.204	
4x SCS occlusal screw, 048.350	

RN = Regular Neck (Ø 4.8 mm)
Fabrication of bars using the one-piece casting method

As an alternative to the laser-welded or soldered gold bars, the dental technician now has a choice of RN synOcta® plastic coping, bar (048.227), and the bar variants standard (048.460) and mini (048.461) in burn-out plastic for the fabrication of a cast titanium bar [Wirz, 1997 and Wirz et al., 1999].

The standard and mini titanium bar matrices which fit the titanium bar (from left to right).

The bar, composed of plastic parts and prepared for embedding.

The bar cast from pure titanium.

Note: The production of a gold bar in the one-piece casting method is also possible.
<table>
<thead>
<tr>
<th>Art.-No.</th>
<th>Article</th>
<th>Dimension</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>048.227</td>
<td>RN synOcta® plastic coping bridge/bar, for 048.601</td>
<td>height 10.0 mm</td>
<td>burn-out plastic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>shortenable</td>
<td></td>
</tr>
<tr>
<td>048.460</td>
<td>Plastic bar, egg-shaped cross-section, standard</td>
<td>height 3.0 mm</td>
<td>burn-out plastic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>length 80.0 mm</td>
<td></td>
</tr>
<tr>
<td>048.461</td>
<td>Plastic bar, egg-shaped cross-section, mini</td>
<td>height 2.3 mm</td>
<td>burn-out plastic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>length 80.0 mm</td>
<td></td>
</tr>
<tr>
<td>048.470</td>
<td>Titanium bar matrix, standard, incl. spacer</td>
<td>height 4.5 mm</td>
<td>titanium</td>
</tr>
<tr>
<td></td>
<td></td>
<td>length 50.0 mm</td>
<td></td>
</tr>
<tr>
<td>048.471</td>
<td>Titanium bar matrix, mini, inkl. spacer</td>
<td>height 3.5 mm</td>
<td>titanium</td>
</tr>
<tr>
<td></td>
<td></td>
<td>length 50.0 mm</td>
<td></td>
</tr>
</tbody>
</table>

Bar Set Plastic 040.197

Contents: 2x RN synOcta® 1.5 screw-retained abutment, 048.601
2x RN synOcta® analog, 048.124
2x RN synOcta® plastic coping, bar, 048.227
2x SCS occlusal screw, 048.350

RN = Regular Neck (Ø 4.8 mm)
Fabrication of laser-welded bars with titanium components

In addition to the gold variant, the bar can also be composed of prefabricated titanium parts using a laser-welding technique.

A RN synOcta® titanium coping, bar (048.214) and the titanium bar variants standard (048.465) and mini (048.466) are available.

The standard and mini titanium matrices which fit the titanium bar (from left to right).

The bar segments are fitted to the master cast, allowing a minimum gap. Larger gaps are offset by the addition of more titanium.

The segments are welded together with adequate argon gas rinsing.
Important: The soldering points must not show any blue discoloration. This type of discoloration indicates inadequate argon gas ventilation and therefore oxygen uptake by the metal. This makes the weld brittle and therefore weakens the bar construction. The laser device operating instructions must be followed. See also "Positioning the bar matrix" on page 16.

<table>
<thead>
<tr>
<th>Art. No.</th>
<th>Article</th>
<th>Dimension</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>048.214</td>
<td>Rn synOcta®-Titanium coping, bar, for 048.601</td>
<td>height 6.0 mm</td>
<td>titanium</td>
</tr>
<tr>
<td>048.465</td>
<td>Titanium bar, egg-shaped cross-section, standard</td>
<td>height 3.0 mm</td>
<td>titanium</td>
</tr>
<tr>
<td></td>
<td></td>
<td>length 50.0 mm</td>
<td></td>
</tr>
<tr>
<td>048.466</td>
<td>Titanium bar, egg-shaped cross-section, mini</td>
<td>height 2.3 mm</td>
<td>titanium</td>
</tr>
<tr>
<td></td>
<td></td>
<td>length 50.0 mm</td>
<td></td>
</tr>
<tr>
<td>048.470</td>
<td>Titanium bar matrix standard, incl. spacer</td>
<td>height 4.5 mm</td>
<td>titanium/brass</td>
</tr>
<tr>
<td></td>
<td></td>
<td>length 50.0 mm</td>
<td></td>
</tr>
<tr>
<td>048.471</td>
<td>Titanium bar matrix mini, incl. spacer</td>
<td>height 3.5 mm</td>
<td>titanium/brass</td>
</tr>
<tr>
<td></td>
<td></td>
<td>length 50.0 mm</td>
<td></td>
</tr>
</tbody>
</table>

Bar Set Titanium 040.196
Contents:
- 2x Rn synOcta® 1.5 screw-retained abutment, 048.601
- 2x Rn synOcta® analog, 048.124
- 2x Rn synOcta® titanium coping, bar, 048.214
- 2x SCS occlusal screw, 048.350

RN = Regular Neck (Ø 4.8 mm)
Once the bar has been tried in, the denture with metal reinforcement can be fabricated. The teeth are set up according to modern full denture principles (e.g., Gerber et al.).

Once the wax-up denture has been tried in, the teeth are secured in a plaster or silicone index. To enable the index to be repositioned accurately on the duplicate model, grooves are made in the ground labial surface of the master model.

The bar is then blocked out for duplicating. In order to do so, the bar is fitted onto the master model.

Important: Before the bar sleeve is positioned, the spacer must be fixed to the bar. This ensures vertical translation of the denture.

The bar is then coated with a 0.4 mm thick wax sheet, which acts as a spacer. Labially and lingually, the wax is only extended to the mucosa. Stops of approximately 4 x 3 mm must be cut out to coincide with the height of the premolars and the second molar.
When the duplicating mould has been removed, the index can be fitted to the duplicate model. The plastic teeth are integrated into the index and matched to the duplicate model.

The dimensions and thickness of the lingual surfaces of the teeth to be built up are governed by the prevailing anatomical conditions. The retainers for the sleeve or rider should also be positioned to provide good mechanical retention.

The areas of the bar rider and strengtheners which contact the denture acrylic must be silanized [e.g., Rocatec, Silicoater] or be pretreated with a primer.

Important: The bar sleeve and rider must not be soldered to the metal framework as this would prevent them being replaced at a later date. Also, any heat treatment would adversely affect the elastic properties of the lamellae.

The finished metal-reinforced jointed bar.
If the implant-borne anchorage of an existing full denture is necessary, this can be fitted with a bar construction after implantation and the relevant healing time.

In this case, impression-taking is carried out with the existing denture in combination with one-part plastic impression caps (048.093V4).

Important: The caps are suitable only for impression-taking of implants with a shoulder diameter of 4.8 mm.

First, the healing caps are removed from the implants and the impression caps fitted with a snap-on mechanism. The relevant part of the existing denture is hollowed out.

Important: It must be possible to fit the denture over the impression caps without making contact.

After adjusting the denture, the impression is taken with the integrated caps, using an elastomeric impression material (polyvinylsiloxane or polyether rubber).

To protect the implant shoulder, the healing caps are screwed back onto the implants after the impression-taking.
The master cast is fabricated using special hard plaster. One-part, RN synOcta® analogs (048.108) are available.

These are placed in the plastic impression caps situated in the denture, and the master cast is then fabricated in the conventional way using special hard plaster, type 4. It is important to fix the bite height, as is usual with, for example, a denture relining.

After removing the denture and the impression material from the plaster master cast, the bar construction procedure is decided, and the denture is hollowed out accordingly.

The bar is fabricated as described on pages 11–14 and/or 20–23.

The bar matrices with the spacer (denture resilience) are positioned on the finished bar construction, and the undercut points and outside of the matrices are blocked out with wax (to ensure that they can be activated/deactivated). The denture is then adapted to the bar construction by polymerisation of the matrices. The denture is then checked for surplus plastic in the region of the matrices and for function.

Important: This step is essential, because only in this way can the optimum function of the integrated bar matrices (incl. ability to activate/deactivate them) be ensured. Unremoved plastic residue may damage the bar construction/implants.

Before the bar is fitted, the RN synOcta® 1.5 screw-retained abutments (048.601) are screwed into the implants with a force of 35 Ncm.

Art. No. 048.108
RELINING AN IMPLANT-BORNE BAR DENTURE

Hybrid dentures with resilient retention units should be examined at intervals of approximately 3 months to enable harmful excursions of the denture to be eliminated in their early stages.

If the alveolar ridge resorbs after a prolonged wearing time, the bar-borne denture sinks. This leads to a loss of resilience of the matrices and so to greater stress on the retentive elements/implants. Relining then becomes necessary.

Relining is carried out with the bar in position.

First, the occlusal screws (048.350V4) are replaced by fixing pins (048.073V4). These fixing pins are made from plastic and have a snap-on mechanism. They are used only to secure the bar on the implants when taking a relining impression with the denture. The fixing pins are intended for single use only.

Important: To preserve the resilience of the denture, the corresponding spacer must be inserted between the bar and matrix before impression-taking. After impression-taking, the bar stays in the denture, and the dental technician inserts the one-part RN synOcta® analog (048.108) into the bar caps.

The master cast is fabricated and prepared for relining in the conventional way.

Before relining, the bar is secured to the master cast with the SCS occlusal screws, the undercut points are blocked out with wax, and the corresponding spacer is fixed in the bar matrix. Relining is then carried out in the conventional way.

After relining, the spacer is removed and the matrices are checked for surplus plastic and for function.

Important: This step is essential, because only in this way can the optimum function of the relined, implant-borne bar denture be ensured. Interference with the functioning of the joint mechanism may damage the implant or bar construction.
REFERENCES

Basimo C.
Implantatauslenkung bei unter-
 verschiedlicher Verankerung abnehm-
barer Suprastrukturen

Carisch H.
Zahntechnische Aspekte bei der
Herstellung einer implantatgetra-
gen Unterkiefer-Totalprothese
Quintessenz Zahntech 9, 913–925
(1987)

Dolder E., Wirz J.
Die Stegglelenprothese
Quintessenz Verlag, Berlin (1982)

Jäger K., Wirz J.
In-vitro-Spannungsanalysen an
Implantaten in Abhängigkeit von
den hybridprothetischen
Suprakonstruktionen
Z Zahnärztl Implantol 9: 42–49
(1993)

Lang N.P., Brägger U.,
Hämmerle C.H.F., Mommbelli A.,
Lehmann B., Weigel C.
Das ITI® DENTAL IMPLANT SYSTEM:
Behandlungsstrategie
Basisinformation, Institut Straumann AG
(1994)

Mericske-Stern R.
Force distribution on implants sup-
porting overdentures: the effect of
distal bar extensions. A 3-D in vivo
study
Clin Oral Implants Res. 1997 Apr;
8 (2): 142–51. PMID: 9758965;
UI: 98431129

Mericske-Stern R.
Implantate im zahnlosen
Unterkiefer
Schweiz Monatschr Zahnmed, 102:
1215–1224 (1992)

Mericske-Stern R., Belser U., Taylor T. D.
Management of the edentulous
Patient

Merz B., Mericske-Stern R., Lengsfeld
M., Schmitt J.
Dreidimensionales FE-Modell eines
zahnlosen, mit Implantaten ver-
sorgten Unterkiefers
Biomedizinische Technik 41: Ergän-
zungsband 1, 34–35 (1996)

Spiekermann H.
Die prothetische Behandlung Be-
handlungskonzept 1
In: Rateitschak K.H., Wolf H.F. (Hrsg):
Farbatlanten der Zahnmedizin 10,
Implantologie. Thieme Stuttgart/
New York, S. 150 (1994)

Tilse M., Dietrich P., Weingart D.
Stegretinierte Hybridprothesen auf
Bonefit-Implantaten unter Verwen-
dung des Octa-Systems
Implantologie 1: 39–49 (1994)

Wirz J., Jäger K.
Stegverankerungen implantat-
getragener Hybridprothesen

Wirz J.
Hybridprothese im atrophierten
Unterkiefer
In: Fozzick Ch. (Hrsg): Das ITI® DENTAL
IMPLANT SYSTEM. Schlütersche
Verlagsanstalt,
Hannover, S. 129 (1994)

Wirz J., Schmidli F., Schaad R.
Werkstoffkundliche Aspekte der
Hybridprothesen
Quintessenz 45; 1131–1142 (1994)

Wirz J., Jungo M., Isaac M.
Renaissance der Stegprothetik mit
neuen Werkstoffen und
Technologien
Teil 1:
Quintessenz 50, 611–617 (1999)
Teil 2:
Quintessenz 50, 719–739 (1999)

Wirz J.
Titan – der Werkstoff für die Teil-
und Hybridprothetik mit und ohne
Implantate
Wirz J. u. Bischoff H. (Hrsg.): titan in
der Zahnmedizin S. 312–332, Quint-
essenzverlag, Berlin (1997)
RETENTIVE ANCHORS

Introduction

Purposes of anchors
- Securing the prosthesis against excursive forces and those which would dislodge the saddles
- Distribution of shear forces
- To transfer the masticatory forces as axially as possible from the denture to the implant

Description/Function
The retentive anchor is assigned to the movable attachments. Retentive units that permit rotary movement of the denture in one or more directions and/or vertical translational movements are termed mobile units.

The mobile connector shortens the lever arm of the tilting forces exerted on the implant. The implants must always be placed at an angle of 90° to the occlusal plane to ensure that they are loaded axially. Precisely designed occlusal surfaces – balanced occlusion with freedom-in-centric (Geering et al., 1993) – and optimum design of the denture fitting surface also influence the stability of the denture and the distribution of the masticatory forces (Worthington et al., 1992). We recommend that a new denture always be fabricated as part of the treatment plan or after the provision of implants (Mericske-Stern, 1988).

Indications for retentive anchors
- Use with standard implants Ø 4.1 mm or Ø 4.8 mm with Ø 4.8 mm shoulder
- Resilient anchorage in the edentulous maxilla and mandible in conjunction with two implants to ensure the degrees of freedom
- Insufficient space available (in such cases, bars often cause the anterior section to be extended too far linguually thus restricting the space available for the tongue and impeding its functioning)
- In cases of severely tapering anterior arches and/or jaws (Geering et al., 1993)
- Single retentive anchors allow for designs which are gentle on the periodontium (hygienic)

Contraindications for retentive anchors
- Combined tooth-/implant-borne restorations
- Use of more than two implants per jaw
- In conjunction with attachments exhibiting a different degree of resilience
- If the implants are not vertical to the occlusal plane
- In cases where the implants have been positioned in the arch in such a way as to prevent a tangential axis of rotation
- In unfavourable ridge situations
FABRICATION OF A NEW FULL LOWER DENTURE WITH A METAL REINFORCEMENT AND TWO ELLIPTICAL MATRICES

«Patient» initial situation

Edentulous lower jaw with two implants replacing the canines with retentive anchors (048.439).

Important: To ensure that the retentive anchors function perfectly over a long period of time, the implants must be placed as parallel as possible to one another and vertical to the occlusal plane to create a tangential axis of rotation.

The retentive anchor has a square neck to accommodate the driver, and can be changed if necessary. It is inserted into the implant with a force of 35 Ncm. Measured from the upper edge of the implant shoulder, it is 3.4 mm high.

Taking an impression of the retentive anchor

The impression is taken with an elastomeric impression material (polyvinylsiloxane or polyether rubber) directly over the anchor, without any aids.

Important: In view of its low resistance to tearing, a hydrocolloid is not suitable for this application.
Producing the model

Transfer pins are positioned in the impression and the model is produced in special, type 4 hard plaster. The impression of the retentive anchor provides the square/spherical stud of the transfer pin with sufficient retention in the impression.

To ensure stability, the production and integration of a metal reinforcement in the full lower denture is recommended. Sufficient space must be left for securing the matrices.

The teeth should be set up using the occlusal concept for full dentures.
The principle of function of the Elliptical Matrix

The Elliptical Matrix is used for the fixation of removable resilient full dentures on Straumann implants in conjunction with the retentive anchor. It consists of a titanium housing (pure titanium grade 4) into which a gold lamella retention insert is screwed (Elitor®, Au 68.6%, Ag 11.8%, Cu 10.6%, Pd 4.0%, Pt 2.5%, Zn 2.5%, Ir < 1%).

When there is insufficient space, the wings of the titanium housing can be modified individually. However, a minimum diameter of 3.6 mm must be maintained in order to ensure the retention of the housing in the resin.
Adjusting the retentive force

The screwdriver (Art. No. 046.154) is required for activating, deactivating, and removing the lamella retention insert. The instrument is pushed with the correct alignment into the lamella retention insert as far as it will go. The retentive force is adjusted by rotation (increased by turning clockwise and reduced in the opposite direction). The initial retention force is approximately 200 g, which is also the minimum that can be set.

The maximum retention force is approximately 1400 g. The lamella retention insert must not project out of the housing.

Important: The retentive force should only be adjusted when trying in the finished denture.

The connection between tightening angle and retention force:

<table>
<thead>
<tr>
<th>Tightening angle</th>
<th>0°</th>
<th>90°</th>
<th>180°</th>
<th>270°</th>
<th>360°</th>
<th>Condition on delivery</th>
</tr>
</thead>
<tbody>
<tr>
<td>360°</td>
<td>0°</td>
<td>90°</td>
<td>270°</td>
<td></td>
<td></td>
<td>Tightened as far as it will go</td>
</tr>
</tbody>
</table>

Retention force

- **1400 g**
- **700 g**
- **500 g**
- **300 g**
- **200 g**

** Slight deviations from these average values are possible due to the unavoidable manufacturing tolerances of the retention lamellas and of the retention sphere. If signs of wear are apparent on the retentive anchor, these values no longer apply and the retentive anchor must be exchanged.
Important:
When trying the denture in the patient, always start with the lowest retention force. The retention force is adjusted by rotating the lamella retention insert and must be done in small increments until the desired retention force is obtained. Otherwise, excessive retention forces may cause difficulties when removing the denture from the mouth.

Finished denture
FABRICATION OF A NEW FULL LOWER DENTURE WITH METAL REINFORCEMENT AND TWO TITANIUM MATRICES

«Patient» initial situation

Edentulous lower jaw with two implants replacing the canines with retentive anchors (048.439).

Model starting situation (procedure identical as described above for "Fabrication of a full lower denture with metal reinforcement and two Elliptical matrices").

The titanium matrix (048.450) consists of a titanium alloy (Ti-6Al-4V), hardness HV5 Vickers 350–385. Individual components: threaded ring-spring-housing with retainer (from left to right).
Unlike the Elliptical matrix, the titanium matrix makes use of a spring with a **defined extraction force of 700–1100 g**. If retention is lost, the spring can be replaced.

To replace the spring, the thread on the titanium matrix is unscrewed anticlockwise using a special screwdriver (048.452) and the spring is changed.

The threaded ring is then screwed back in place hand-tight.
The titanium matrices can be polymerised into place as follows:

Method A
Before positioning the matrices on the transfer pins on the model, the original threaded ring is unscrewed and replaced with a plastic threaded ring (048.454V4). The undercuts are blocked out with plaster. The plastic ring is 3/100 mm wider in diameter than the titanium matrix and acts as a spacer for it. This prevents too tight a fit of the titanium threaded ring on the polymerised acrylic. After polymerisation, the threaded ring is replaced by the titanium ring once more.
Method B
The denture is polymerised with special acrylic spacers only (048.451V4). First, the undercuts are blocked out with plaster. Once the denture is ready, the spacers are removed and the dentist can polymerise the titanium matrices into place directly in the patient’s mouth. The spacers are also used to produce the model for the metal reinforcement.
Method C
Before being positioned on the edge of the threaded ring, the titanium matrix is coated with a thin film of die spacer. This ensures that the threaded ring can be released later on without excessive force having to be exerted.

Important: With all three methods, the titanium matrices (or spacers) must also always be positioned on the transfer pins with their axes aligned (parallel to the path of insertion) and the undercuts blocked out.

The finished denture with titanium matrices integrated in the metal framework.

Important: Once the denture is complete, it must be checked to ensure no acrylic has penetrated the matrix. To do this, the threaded ring should be removed and the inner configuration with the spring should be cleaned.
Removal of titanium matrix from an existing denture

To replace an entire titanium matrix, the threaded ring and spring must first be removed. The tip of a special extractor (048.453) is then heated over a Bunsen burner and screwed into the matrix housing. The housing can then be withdrawn from the acrylic denture.
MODIFICATION OF AN EXISTING FULL LOWER DENTURE IN AN IMPLANT-BORNE RETENTIVE ANCHOR DENTURE

Polymerisation of the Elliptical matrix in the patient’s mouth after implantation and osseointegration

The existing full lower denture prior to modification.

The retentive anchors are inserted into the implants with a force of 35 Ncm. The existing denture is then hollowed out in the region of the anchor. The opening created allows the acrylic to flow in. The Elliptical matrices positioned on the anchor must not touch the denture after hollowing.
After positioning on the retentive anchors, a small piece of rubber dam is placed over the matrices. This prevents the acrylic from flowing into the internal matrix configuration.

Important: The matrices must be aligned (parallel to the path of insertion).

The prepared denture is then fixed in the mouth and the acrylic is flowed through the perforation.

The modified denture with the polymerised Elliptical matrices.
Hybrid dentures with retentive anchors should be checked at approximately three-month intervals, to eliminate damaging denture movements by appropriate measures at an early stage. If the alveolar ridge resorbs after a prolonged wearing time, the denture may sink. This leads to a loss of resilience of the matrices and so to greater stress on the retentive anchor/implants. Relining then becomes necessary.

Relining is carried out directly over the retentive anchors. Care should be taken to ensure that the denture is sitting correctly (retentive anchor/matrix connection). The dental technician then positions the transfer pins (048.109) in the matrices (titanium or Elliptical matrix) in the denture and produces the relining model (see also page 31, Producing the model).

After relining, the matrices should be checked for acrylic that may have flowed into them and for their functionality. It must also be possible to activate/deactivate the matrices. After polymerisation, the Elliptical and titanium matrix are opened with the relevant screwdriver and the internal configuration is cleaned.

Important: These measures are vital, because only in this way is the optimum function of the relined, implant-borne anchor denture ensured. If the function of the matrix is impeded, this can damage the implant/anchor.
EDENTULOUS: RETENTIVE ANCHOR

<table>
<thead>
<tr>
<th>Retentive anchor with Elliptical matrix</th>
<th>Retentive anchor with titanium matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Choice of implant</td>
<td>Solid screw implant Ø 4.1 mm, 4.8 mm; shoulder Ø 4.8 mm</td>
</tr>
<tr>
<td>Abutments and laboratory parts</td>
<td>Instruments</td>
</tr>
<tr>
<td>Abutments and laboratory parts</td>
<td>Instruments</td>
</tr>
<tr>
<td>Insertion of abutments</td>
<td></td>
</tr>
<tr>
<td>Retentive anchor</td>
<td>Driver for retentive anchor</td>
</tr>
<tr>
<td>048.439</td>
<td>046.069</td>
</tr>
<tr>
<td>Impression</td>
<td></td>
</tr>
<tr>
<td>Transfer pin</td>
<td>Driver for retentive anchor</td>
</tr>
<tr>
<td>048.109</td>
<td>046.069</td>
</tr>
<tr>
<td>Production of denture</td>
<td></td>
</tr>
<tr>
<td>Elliptical matrix</td>
<td>Screwdriver</td>
</tr>
<tr>
<td>048.456</td>
<td>046.154</td>
</tr>
<tr>
<td></td>
<td>Titanium matrix</td>
</tr>
<tr>
<td></td>
<td>048.450</td>
</tr>
<tr>
<td></td>
<td>Spacer</td>
</tr>
<tr>
<td></td>
<td>048.451V4</td>
</tr>
<tr>
<td></td>
<td>Threaded mounting ring</td>
</tr>
<tr>
<td></td>
<td>048.454V4</td>
</tr>
<tr>
<td>Insertion of</td>
<td></td>
</tr>
<tr>
<td>final restoration</td>
<td>Screwdriver</td>
</tr>
<tr>
<td></td>
<td>046.154</td>
</tr>
<tr>
<td></td>
<td>Spring</td>
</tr>
<tr>
<td></td>
<td>048.455V4</td>
</tr>
<tr>
<td></td>
<td>Extractor</td>
</tr>
<tr>
<td></td>
<td>048.453</td>
</tr>
<tr>
<td></td>
<td>Screwdriver</td>
</tr>
<tr>
<td></td>
<td>048.452</td>
</tr>
</tbody>
</table>
Retentive Anchors

<table>
<thead>
<tr>
<th>Art. No</th>
<th>Article</th>
<th>Dimension</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>048.439</td>
<td>Retentive anchor</td>
<td>height 3.4 mm</td>
<td>Ti</td>
</tr>
<tr>
<td>046.069</td>
<td>Retentive anchor driver</td>
<td>length 19.0 mm</td>
<td>stainless steel</td>
</tr>
<tr>
<td>048.109</td>
<td>Transfer pin for retentive anchor</td>
<td>length 18.0 mm</td>
<td>stainless steel</td>
</tr>
</tbody>
</table>

Elliptical Matrix, Activable

<table>
<thead>
<tr>
<th>Art. No</th>
<th>Article</th>
<th>Dimension</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>048.456</td>
<td>Elliptical matrix</td>
<td>height 3.2 mm Ø 3.6 mm</td>
<td>Elitor®/Ti</td>
</tr>
<tr>
<td>048.457</td>
<td>Spare lamella retention insert</td>
<td>height 2.6 mm</td>
<td>Elitor®</td>
</tr>
<tr>
<td>046.154</td>
<td>Screwdriver</td>
<td>length 37.0 mm</td>
<td>stainless steel</td>
</tr>
</tbody>
</table>

Titanium Matrix with Defined Extraction Force

<table>
<thead>
<tr>
<th>Art. No</th>
<th>Article</th>
<th>Dimension</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>048.450</td>
<td>Titanium matrix for retentive anchor</td>
<td>height 3.1 mm</td>
<td>Ti</td>
</tr>
<tr>
<td>048.451V4</td>
<td>Spacer for titanium matrix</td>
<td>height 3.5 mm</td>
<td>POM</td>
</tr>
<tr>
<td>048.452</td>
<td>Screwdriver titanium matrix</td>
<td>length 60.0 mm</td>
<td>stainless steel/AI, anodised</td>
</tr>
<tr>
<td>048.453</td>
<td>Extractor for titanium matrix</td>
<td>length 100.0 mm</td>
<td>stainless steel</td>
</tr>
<tr>
<td>048.454V4</td>
<td>Threaded mounting ring for titanium matrix</td>
<td>height 2.2 mm</td>
<td>POM</td>
</tr>
<tr>
<td>048.455V4</td>
<td>Spacer for Titanium matrix</td>
<td></td>
<td>stainless steel</td>
</tr>
</tbody>
</table>
REFERENCES

Besimo Ch., Graber G., Schaffner Th.
Hybridprothetische implantatgetragene Suprastrukturen im zahnlosen Unterkiefer
ZWR, 100. Jahrg., Teil 1, Fallplanung, Nr. 1 und 2 (1991)

Cendres&Métaux SA, CH-Biel-Bienne
Konstruktionselemente für die Prothetik
Produktekatalog, Klasse 4 (1993)

Geering A. H., Kundert M.
Total- und Hybridtechnik

Das ITI® DENTAL IMPLANT SYSTEM: Behandlungsstrategie
Basisinformation, Institut Straumann AG (1994)

Mericske-Stern R., Geering A.H.
Die Implantate in der Totalprothetik
Die Verankerung der Totalprothese im zahnlosen Unterkiefer durch zwei Implantate mit Einzelattachments.
Schweiz Monatsschr Zahnmed, Vol. 98.8 (1988)

Mericske-Stern R.
Eine klinische Longitudinalstudie mit Ergebnissen nach vier Jahren
Schweiz Monatsschr Zahnmed, Vol. 98.9 (1988)

Mericske-Stern R.
Clinical Evaluation of Overdenture Restorations
Supported by Osseointegrated Titanium Implants: A Retrospective Study

Mericske-Stern R.
Implantate im zahnlosen Unterkiefer

Mericske-Stern R.
Forces on Implants Supporting Overdentures: A Preliminary Study of Morphologic and Cephalometric Considerations

Mericske-Stern R., Steinlin-Schaffer T., Marti P., Geering A. H.
Periimplant Mucosal Aspects of ITI Implants supporting Overdentures. A 5 year longitudinal study

Worthington P., Brånemark P.-i.
Advanced Osseointegration Surgery: Applications in the Maxillofacial Region
Introduction

Optimal connection is provided by dual retention. Excellent long-term performance thanks to the high wear resistance of the components.

The self-locating design of the LOCATOR® components allows patients to easily seat their dentures. The LOCATOR® retention inserts can be easily placed and removed with the LOCATOR® tool.

The LOCATOR® components can accommodate up to 40° divergence between two implants. Even where occlusal space is limited, restorations are possible thanks to the small vertical dimension of the components.

Indications

The LOCATOR® components are intended for use with dentures that are retained solely by endosteal implants in the mandible or maxilla.

Contraindications

The LOCATOR® components are not suitable for combined tooth- and implant-supported respectively anchored dentures. The LOCATOR® components cannot be used with implant divergences greater than 40°. LOCATOR® components are not suitable on implants with an endosteal diameter of 3.3 mm (except for Narrow Neck CrossFit® implants).
USING PLAN LOCATOR® ABUTMENTS

1. Selecting the right LOCATOR® Abutment
Open the PLAN set, pick up a PLAN LOCATOR® Abutment and secure it with the SCS screwdriver (empty mold for instruments built in).

Place the PLAN LOCATOR® Abutment on the implant (intraoral use) or implant analog (extraoral use). This will help in checking dimensions (rings on PLAN LOCATOR® Abutments indicate gingiva height), axial alignment and screw axis of the potential restoration.

2. Ordering the stock abutment
Once the best fitting PLAN LOCATOR® Abutment is determined, the corresponding stock abutment can be ordered using the allocation chart on the PLAN set inlay card.

Cleaning and sterilizing PLAN abutments
- Clean the PLAN abutments thoroughly with water or ethanol after intraoral use.
- After cleaning, sterilize PLAN abutments with moist heat (autoclave) for 18 minutes at 134 °C (273 °F).
- Refer to the manufacturer’s specifications for the heat-sterilization device.
- Do not sterilize the cassette or its inserts.
- Replace non-functional PLAN abutments.

Note: Do not sterilize PLAN abutments more than 20 times.
Do not gamma-sterilize PLAN abutments.
Do not sterilize the cassette or its components.
FABRICATION OF A NEW FULL DENTURE

1. The implant shoulder should not be covered by the gingiva. Select the height of the LOCATOR® abutment by determining the height of the gingiva.

2. The top margin of the abutment should be 1.0 mm above the mucosa. Inserting the prosthesis is easier for the patient if the LOCATOR® abutments are on the same horizontal level.

3. First, screw the abutment into the implant hand-tight, using the LOCATOR® driver.

4. Then torque the abutment to 35 Ncm using the Straumann ratchet, with the torque control device attached, and the LOCATOR® driver.

5. A white spacer ring (not pictured) is placed on the abutments. The spacer ring prevents plastic from penetrating the region below the matrix housing. To take the impression, place the LOCATOR® impression copings on the LOCATOR® abutments.

6. Take the impression utilizing the mucodynamic technique (vinyl polyl oxide or polyether rubber).

7. It is sent to the dental laboratory. Then, to make the master cast, insert the LOCATOR® female analogs into the LOCATOR® impression copings.
8. Fabricate the master cast in the usual way, using special hard plaster, Type 4. The denture caps with the black processing males are then put on the LOCATOR® analogs. The processing male serves to fix the denture cap on the analog, giving optimal stability.

9. The denture is fabricated using the conventional technique. The polymerised prosthesis with the denture caps and black processing males.

10. After finishing and polishing the denture, remove the black processing males from the denture caps using the LOCATOR® tool, and insert appropriate LOCATOR® replacement males in their place. Refer also to “Using the LOCATOR® core tool” on page 55 and “Selecting the replacement males” on page 56.

11. To insert LOCATOR® replacement males, the tip of the LOCATOR® core tool must be unscrewed.

12. The exposed end of the replacement male is pressed into the denture cap. The replacement male clicks audibly into place.

13. Then insert the finished denture and check the occlusion.
MODIFICATION OF AN EXISTING LOWER FULL DENTURE INTO A DENTURE FIXED ON LOCATOR® ABUTMENTS WITH SIMULTANEOUS RELINING

1. The implant shoulder should not be covered by the gingiva. Select the height of the LOCATOR® abutment by determining the height of the gingiva.

2. The upper border of the abutment should be 1.0 mm above the mucosa.

3. First, screw the abutment into the implant hand-tight, using the LOCATOR® driver.

4. Then torque the abutment to 35 Ncm using the Straumann ratchet, with the torque control device attached, and the LOCATOR® driver. A white block out spacer ring is put on the abutments (not illustrated). The block out spacer ring prevents resin from flowing into the region below the denture cap.

5. Place the denture caps, with the black processing males, onto the LOCATOR® abutments.

6. Then hollow out the existing denture base in the areas of the LOCATOR® denture caps.

7. Insert the denture into the patient’s mouth and check the fit. The denture caps fixed on the abutments must not touch the denture.

8+9. The impression for the relining is taken using the conventional technique.
10. Subsequently, to fabricate the master cast, insert the LOCATOR® female analogs into the denture caps, which are located in the impression material.

11. Fabricate the master cast in the usual way using special hard plaster, Type 4. Then place the denture caps onto the LOCATOR® female analogs. The processing male serves to fix the denture cap on the analog, giving optimal stability.

Note: The denture caps with the black processing males must be securely seated on the analogs. Then the denture is relined using the conventional technique.

12. After finishing and polishing the denture, remove the black processing males from the denture caps using the LOCATOR® tool, and insert appropriate replacement males in their place. Refer also to “Using the LOCATOR® core tool” on page 55 and “Selecting the replacement males” on page 56.

13. To insert LOCATOR® replacement males, the tip of the LOCATOR® core tool must be unscrewed. The exposed end of the replacement male is pressed into the denture cap. The retention insert clicks audibly into place.

14. Then insert the finished denture and check the occlusion.
MODIFICATION OF AN EXISTING LOWER FULL DENTURE INTO A DENTURE FIXED ON LOCATOR® ABUTMENTS IN THE PATIENT’S MOUTH

1. Four implants with screwed [35 Ncm] LOCATOR® abutments in the mandible.

2. LOCATOR® abutments with white block out spacer rings attached.

3. Denture caps with attached black processing males on LOCATOR® abutments.

4. Hollow-ground prosthesis with connecting holes for filling with prosthesis resin. Important: when checking fit in the mouth, the denture caps fixed on the abutments must not touch the prosthesis.
Polymerizing the denture caps into the denture

5. The connecting holes are now filled with prosthetic resin from lingual, and the caps are thus anchored in the denture. For this purpose, use a lightcure or self-curing resin. After curing, remove any excess resin and polish the denture.

Note: If the white LOCATOR® block out spacer do not completely fill the space between the gingiva and the denture caps, any remaining undercuts must be blocked out to prevent resin flowing under the caps. This can be accomplished by, for example, stacking two or more LOCATOR® block out spacer.

Once the resin has cured, remove the denture from the mouth and discard the white LOCATOR® block out spacer. Remove any excess resin.

6.+7. After polishing the denture base, remove the black processing males and insert appropriate LOCATOR® replacement males in their place. Refer also to “Using the LOCATOR® core tool” on page 55 and “Selecting the replacement males” on page 56.

8. Then insert the finished denture and check the occlusion.

Photographs courtesy of
Dr. Robert C. Vogel
Determining the angulation of LOCATOR® abutments in the mouth

Two instruments are available for checking the angulation of the LOCATOR® abutments that have been screwed into the implants:

LOCATOR® parallel post
(Art. No. 048.199V4)

LOCATOR® Angle measurement guide
(Art. No. 048.200)

Snap the LOCATOR® parallel posts onto the LOCATOR® abutments. Use the LOCATOR® angle measurement guide to determine the respective angulation of the LOCATOR® abutments in relation to each other. To do this, hold the angle measurement guide behind the placed parallel posts and read off the angle for each abutment.

Important: Choose the appropriate LOCATOR® replacement males according to the angulation measured.

Caution: Tie dental floss to the lateral holes of the angle measurement guide to prevent aspiration.

Impression procedure at implant shoulder level

It is also possible to take the impression at the level of the implant shoulder without LOCATOR® abutments.

To do this, the impression is taken with Straumann impression components (snap-on or screwed impression, see page 6–9). The master cast is made with Straumann analogs (Art. No. 048.124).

The LOCATOR® abutments are selected in the dental laboratory. The upper border of the abutment should be 1.0 mm above the mucosa. Further procedure is the same as when LOCATOR® analogs are used.
Using the LOCATOR® core tool

The LOCATOR® core tool is a three-piece multifunction instrument.

The tip is used for removing replacement males from the denture caps. To do this, the tip must be unscrewed by two full turns. A gap is visible between the tip and the middle section.

The tip is passed in a straight line into the denture cap with a replacement male. The sharp edges of the tip hold the replacement male while it is being removed. The instrument is drawn out of the denture cap in a straight line.

To remove the replacement male from the instrument, the tip must be screwed clockwise completely onto the middle section. This activates the loosening pin inside the tip, which releases the replacement male.

The middle section of the LOCATOR® core tool is used for inserting replacement males into the denture caps. To do this, the tip is unscrewed. The exposed end of the replacement male is pressed into the denture cap. The replacement male is fixed firmly in the cap when a click is heard.

The LOCATOR® abutment holder sleeve makes it easier to deliver a LOCATOR® abutment, and it retains the abutment while threading it into the implant. The LOCATOR® abutment holder sleeve can be autoclaved.
The end (gold-coloured) of the LOCATOR® core tool is used by the dental technician for screwing and unscrewing the LOCATOR® abutments to the analogs.

Using the black processing male

Both the LOCATOR® female analog and the LOCATOR® denture cap are supplied with a preassembled black processing male. The black processing male is used as a spacer for the various LOCATOR® replacement males. In the case of underlining of a LOCATOR®-anchored prosthesis, the LOCATOR® replacement males must be removed from the denture caps and be exchanged for black processing males. The black processing males keep the prosthesis in a stable vertical position with the denture caps during the impression procedure and working. When underlining and working of the prosthesis is finished, the black processing males are exchanged for the corresponding new LOCATOR® replacement males.

Selecting the LOCATOR® replacement males

To enable patients to insert and remove their LOCATOR® retained dentures simply and reliably, the divergence of the path of insertion of the individual LOCATOR® abutments must not exceed 10° per jaw (or 20° in the case of two abutments). If several (3 or more) LOCATOR® abutments are used in the same jaw, we recommend using pink LOCATOR® replacement males, Art. No. 048.191V4, with light retention (3.0 lbs/1.36 kg), or blue, Art. No. 048.192V4, with extra-light retention (1.5 lbs/0.68 kg).

In the case of implant divergences of more than 10° to 20° (or up to 40° in the case of two abutments), the LOCATOR® extended range replacement males in green with normal retention (4 lbs/1.82 kg), Art. No. 048.193V4, can be used or orange, with light retention (2.0 lbs/0.91 kg), Art. No. 048.188V4, or red, with extra-light retention (1 lbs/0.45 kg), Art. No. 048.194V4.

Caution: we recommend using the loosest retention elements first (blue, Art. No. 048.192V4) with the prosthetic restoration. If the patient feels that they are too loose, elements with a greater retention force may be used.
PRODUCT OVERVIEW

<table>
<thead>
<tr>
<th>Art.-No</th>
<th>Article</th>
<th>Dimensions</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>048.27S4</td>
<td>RN PLAN LOCATOR® Abutment</td>
<td>height 1.0 mm</td>
<td>POM</td>
</tr>
<tr>
<td>048.276V4</td>
<td>RN PLAN LOCATOR® Abutment</td>
<td>height 2.0 mm</td>
<td>POM</td>
</tr>
<tr>
<td>048.277V4</td>
<td>RN PLAN LOCATOR® Abutment</td>
<td>height 3.0 mm</td>
<td>POM</td>
</tr>
<tr>
<td>048.278V4</td>
<td>RN PLAN LOCATOR® Abutment</td>
<td>height 4.0 mm</td>
<td>POM</td>
</tr>
<tr>
<td>048.279V4</td>
<td>RN PLAN LOCATOR® Abutment</td>
<td>height 5.0 mm</td>
<td>POM</td>
</tr>
<tr>
<td>048.280V4</td>
<td>RN PLAN LOCATOR® Abutment</td>
<td>height 6.0 mm</td>
<td>POM</td>
</tr>
<tr>
<td>048.283V4</td>
<td>WN PLAN LOCATOR® Abutment</td>
<td>height 1.0 mm</td>
<td>POM</td>
</tr>
<tr>
<td>048.284V4</td>
<td>WN PLAN LOCATOR® Abutment</td>
<td>height 2.0 mm</td>
<td>POM</td>
</tr>
<tr>
<td>048.285V4</td>
<td>WN PLAN LOCATOR® Abutment</td>
<td>height 3.0 mm</td>
<td>POM</td>
</tr>
<tr>
<td>048.286V4</td>
<td>WN PLAN LOCATOR® Abutment</td>
<td>height 4.0 mm</td>
<td>POM</td>
</tr>
<tr>
<td>048.287V4</td>
<td>WN PLAN LOCATOR® Abutment</td>
<td>height 5.0 mm</td>
<td>POM</td>
</tr>
</tbody>
</table>

For information about the NNC LOCATOR® Abutment, please refer to "Prosthetic Procedures for the Narrow Neck CrossFit® Implant" (Art. No. 152.808).
<table>
<thead>
<tr>
<th>Art.-No</th>
<th>Article</th>
<th>Dimensions</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOCATOR® Abutments</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>048.175/048.183</td>
<td>RN/WN LOCATOR® Abutment</td>
<td>height 1.0 mm</td>
<td>titanium alloy/Ti-N•</td>
</tr>
<tr>
<td>048.176/048.184</td>
<td>RN/WN LOCATOR® Abutment</td>
<td>height 2.0 mm</td>
<td>titanium alloy/Ti-N•</td>
</tr>
<tr>
<td>048.177/048.185</td>
<td>RN/WN LOCATOR® Abutment</td>
<td>height 3.0 mm</td>
<td>titanium alloy/Ti-N•</td>
</tr>
<tr>
<td>048.178/048.186</td>
<td>RN/WN LOCATOR® Abutment</td>
<td>height 4.0 mm</td>
<td>titanium alloy/Ti-N•</td>
</tr>
<tr>
<td>048.179/048.187</td>
<td>RN/WN LOCATOR® Abutment</td>
<td>height 5.0 mm</td>
<td>titanium alloy/Ti-N•</td>
</tr>
<tr>
<td>048.180</td>
<td>RN LOCATOR® Abutment</td>
<td>height 6.0 mm</td>
<td>titanium alloy/Ti-N•</td>
</tr>
<tr>
<td>LOCATOR® Components</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>048.189V2</td>
<td>LOCATOR® male processing package, contents: denture cap (Ø 5.5 mm, height 2.5 mm) with black processing male (height 1.9 mm), block out spacer (048.196), clear replacement male (048.190), pink replacement male (048.191) and blue replacement male (048.192)</td>
<td></td>
<td>titanium/nylon</td>
</tr>
<tr>
<td>048.190V4</td>
<td>LOCATOR® replacement male, clear, 0°–10°*, 5 lbs, 2.27 kg**</td>
<td>height 1.7 mm</td>
<td>nylon</td>
</tr>
<tr>
<td>048.191V4</td>
<td>LOCATOR® replacement male, pink, light retention, 0°–10°*, 3 lbs, 1.36 kg**</td>
<td>height 1.7 mm</td>
<td>nylon</td>
</tr>
<tr>
<td>048.192V4</td>
<td>LOCATOR® replacement male, blue, extra-light retention, 0°–10°*, 1.5 lbs, 0.68 kg**</td>
<td>height 1.7 mm</td>
<td>nylon</td>
</tr>
<tr>
<td>048.182V2</td>
<td>LOCATOR® male processing package, extended range, contents: denture cap (Ø 5.5 mm, height 2.5 mm) with black processing male (height 1.9 mm), block-out spacer (048.196), green replacement male (048.193), orange replacement male (048.188), red replacement male (048.194)</td>
<td></td>
<td>titanium/nylon</td>
</tr>
<tr>
<td>048.193V4</td>
<td>LOCATOR® replacement male, green, extended range, 10°–20°*, 4 lbs, 1.82 kg**</td>
<td>height 1.7 mm</td>
<td>nylon</td>
</tr>
<tr>
<td>048.188V4</td>
<td>LOCATOR® replacement male, orange, light retention, extended range, 10°–20°*, 2 lbs, 0.91 kg**</td>
<td>height 1.7 mm</td>
<td>nylon</td>
</tr>
<tr>
<td>048.194V4</td>
<td>LOCATOR® replacement male, red, extra-light retention, extended range, 10°–20°*, 1 lbs, 0.45 kg**</td>
<td>height 1.7 mm</td>
<td>nylon</td>
</tr>
<tr>
<td>Art.-No</td>
<td>Article</td>
<td>Dimensions</td>
<td>Material</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>-------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>048.181V4</td>
<td>LOCATOR® replacement male, gray, zero (0) retention</td>
<td>height 1.7 mm</td>
<td>nylon</td>
</tr>
<tr>
<td>048.198V4</td>
<td>LOCATOR® female analog</td>
<td>length Ø 10.0 mm</td>
<td>aluminium</td>
</tr>
<tr>
<td>048.218V4</td>
<td>LOCATOR® processing spacer</td>
<td>Ø 5.0 mm</td>
<td>POM</td>
</tr>
<tr>
<td>046.413V4</td>
<td>LOCATOR® abutment holder sleeve</td>
<td></td>
<td>PSU</td>
</tr>
<tr>
<td>048.197V4</td>
<td>LOCATOR® impression coping</td>
<td>height 4.0 mm</td>
<td>aluminium housing with LDPE insert</td>
</tr>
<tr>
<td>048.196V20</td>
<td>LOCATOR® block out spacer</td>
<td>thickness 0.4 mm</td>
<td>silicone rubber</td>
</tr>
<tr>
<td>048.195V4</td>
<td>LOCATOR® black processing male</td>
<td>height 1.9 mm</td>
<td>LDPE</td>
</tr>
<tr>
<td>046.415</td>
<td>LOCATOR® core tool</td>
<td>length 100.0 mm</td>
<td>stainless steel</td>
</tr>
<tr>
<td>046.416</td>
<td>LOCATOR® driver short for ratchet</td>
<td>length 15.0 mm</td>
<td>stainless steel</td>
</tr>
<tr>
<td>046.417</td>
<td>LOCATOR® driver long for ratchet</td>
<td>length 21.0 mm</td>
<td>stainless steel</td>
</tr>
<tr>
<td>048.199V4</td>
<td>LOCATOR® parallel post</td>
<td>length 8.0 mm</td>
<td>LDPE</td>
</tr>
<tr>
<td>048.200</td>
<td>LOCATOR® angle measurement guide</td>
<td>length 5.0 mm</td>
<td>stainless steel</td>
</tr>
</tbody>
</table>

- • = Titanium Nitride-coated
- V2 = Pack of 2
- V4 = Pack of 4
- V20 = Pack of 20
- LDPE = Low Density Polyethylene
- * = For the correction of angle divergences
- ** = Retentionforce

LOCATOR® is a registered trademark of Zest Anchors, Inc., USA.

Manufacturer
Zest Anchors, Inc.
Escondido, CA 92029
USA

Distributor
Institut Straumann AG
4002 Basel
Switzerland

Institut Straumann AG is the sole distributor of the LOCATOR® products listed in this brochure for the Straumann® Dental Implant System.
Introduction

The functions of magnetic anchorage units

- Securing the prosthesis against tractive excursive forces and those which would dislodge the saddles.

- Distribution of shear forces.

- To transfer the masticatory forces axially from the denture to the implant.

Description/Function

The magnetic anchor is a dynamic anchor.

Retentive units which permit rotary movement of the denture in one or more directions and/or vertical translational movements are termed dynamic units.

The dynamic connector shortens the lever arm of the tilting forces exerted on the implant. The implants must always be placed at an angle of 90° to the occlusal plane to ensure that they are loaded axially. Precisely designed occlusal surfaces – balanced occlusion with freedom-in-centric (Geering et al., 1993) – and optimum design of the denture fitting surface also influence the stability of the denture and the distribution of the masticatory forces (Worthington et al., 1992). We recommend that a new denture always be fabricated as part of the treatment plan or after the provision of implants (Mericske-Stern, 1988; Wirz et al., 1993, 1994).

Warning: Special precautions must be taken when working with magnets. When carrying out MRI (Magnetic Resonance Imaging) diagnoses or taking X-rays, the implant magnets and denture must be removed.

The titanium coating of the Titanmagnetics® inserts and denture Titanmagnetics®, is up to 0.2 mm thick and air-tight, must not be sand-blasted under any circumstances, otherwise the magnetic alloy (Sm₂Co₁₇) would be exposed. This destroys the Titanmagnetics®, releasing corrosion products into the body.

Titanmagnetics® must not be soldered or laser-welded. Extreme heat causes an irreversible loss of magnetic force and can damage the titanium coating. Damaged Titanmagnetics® must be replaced immediately.
Magnetic fields
In the current literature, there is no evidence that permanent magnetic fields with field strengths in the region of 200–300 mT (Millitesla) cause local damage in humans. Titanmagnetics® generate a permanent magnetic field equivalent to the Earth’s natural magnetism. The mean field strengths are 186 mT.

When the denture is in the resting position, the magnetic field is enclosed within itself (Cerny, 1979, 1980).

Caution: Titanmagnetics® are part of a total concept and must be used only with the corresponding steco® original parts and Straumann instruments, as directed by the manufacturer.

steco® and Titanmagnetics® are trademarks of steco-system-technik GmbH & Co. KG, Germany.

Indications for magnets
- Extensive gaps which cannot be bridged with bars
- Insufficient space available (in such cases, bars often cause the anterior section to be extended too far lingually thus restricting the space available for the tongue)
- In cases of severely tapering anterior arches and/or jaws
- Periodontium-friendly design with a magnet (hygienic); particularly suitable for elderly and/or disabled patients

Contraindications for magnets
- Combined tooth-/implant-borne restorations
- In conjunction with attachments exhibiting a different degree of freedom
- If the implants are not vertical to the occlusal plane

Note: Titanmagnetics® are not available in all countries.

Manufacturer
steco-system-technik GmbH & Co. KG
Kollaustrasse 6
D-22529 Hamburg, Germany
«Patient» initial situation

Edentulous lower jaw with two implants replacing the canines with Titanmagnetics® inserts (048.511).

Important: To ensure that the Titanmagnetics® insert function perfectly over a long period of time, the implants must be placed as parallel as possible to one another and vertical to the occlusal plane to create a tangential axis of rotation.

The Titanmagnetics® insert is fitted with an external octagon to accommodate the Titanmagnetics® insert applicator, and can be replaced as required. It is screwed into the implant with a force of 15–20 Ncm. Measured from the implant shoulder, it is 3.25 mm high and has a diameter of 4.8 mm.
Titanmagnetics® insert applicator (046.146) and Titanmagnetics® insert (048.511).

Denture Titanmagnetics® (048.515), positioning cuff (048.516).

Titanmagnetics® impression cap (048.014), left,
Titanmagnetics® model implant (048.121), right.
Impression-taking with the Titanmagnetics® insert

The impression is taken with an individually produced plastic impression tray with an elastomeric impression material (polyvinylsiloxane or polyether rubber) over the Titanmagnetics® impression cap positioned on the Titanmagnetics® insert.

Important: Due to its insufficient tensile strength and poor elastic recoil, hydrocolloid is not suitable for this application.

Producing the master cast

The Titanmagnetics® model implants are then placed in the impression posts and the master cast is fabricated using special hard, type 4 plaster. The analogues and impression posts are retained by magnetic force.

Tip: To ensure stability, the production and integration of a metal reinforcement in the full lower denture is recommended. Sufficient space must be left for positioning the denture Titanmagnetics®.
Before fabricating the wax model, the positioning cuffs are placed as a spacer between the Titanmagnetics® insert and the denture Titanmagnetics®. The thin silicon lip is removed with fine scissors/blade. With the aid of the positioning cuff, a defined area is left free around the Titanmagnetics®, facilitating the easy, stress-free insertion and removal of the denture.

The teeth should be set up using the occlusal concept for full dentures and in accordance with the treatment plan.
Basal view of wax model.

After the wax trial, the denture is finished using, for example, the flask technique.

Important: After polymerisation, any plastic residue must be carefully removed from the shiny underside of the denture Titanmagnetics®. The magnets must not be sand-blasted.

Denture Titanmagnetics® in situ. The space created by the use of the positioning cuff (resilience compensation) is clearly visible.
MODIFICATION OF AN EXISTING FULL LOWER DENTURE ON AN IMPLANT-BORNE MAGNETIC DENTURE

«Patient» initial situation»

Edentulous lower jaw with two implants replacing the canines with Titanmagnetics® inserts (048.511), inserted with a force of 15–20 Ncm.

The positioning cuff (048.516) is placed on the Titanmagnetics® insert and the denture Titanmagnetics® is placed over that. The positioning cuff acts as a spacer and keeps the two Titanmagnetics® approx. 0.3 mm apart. This ensures resilience of the denture on the gingiva. During intra-oral polymerisation, the flexible lip of the positioning cuff prevents liquid plastic from coming into contact with the gingiva and implant.

Caution: Titanmagnetics® must not be ground.
The denture is sufficiently hollowed out in the region of the magnet and perforated lingually. The denture is then placed in the patient’s mouth.

Now, the denture Titanmagnetics® can be secured with self-polymerising plastic through the lingual perforation.

The polymerised denture Titanmagnetics® in situ.
Hybrid dentures with resilient retention units should be examined at intervals of approximately 3 months to ensure harmful excursions of the denture are be eliminated in their early stages.

If the alveolar ridge resorbs after a prolonged wearing time, the Titanmagnetics®-borne denture may sink. This leads to a loss of resilience by the matrices and so to greater stress on the Titanmagnetics®/implants. Relining then becomes necessary.

Important: Relining prevents the friction to the Titanmagnetics® caused by the constant masticatory movements, thus stopping wear to the titanium coating and the release of corrosion products from the exposed magnets.

To ensure the resilience of the denture, the Titanmagnetics® must be fitted with the positioning cuffs (048.516) before relining, as during fabrication/modification. To do so, the thin lips of the positioning cuffs are removed with scissors/blade and the cuffs are placed in the Titanmagnetics® in the denture (048.515) and secured in the spaced created during fabrication/modification.

Impression-taking for relining takes place directly over the Titanmagnetics® insert in the implant. The correct fit of the denture (Titanmagnetics® insert/positioning cuff/denture Titanmagnetics®) should be ensured.

The dental technician then checks the Titanmagnetics® model implant (048.121) in the denture Titanmagnetics® in the denture, and fabricates the relining model (see also page 63, Producing the master cast).

After relining, the positioning cuffs are removed and the denture is checked for surplus plastic in the region of the Titanmagnetics® and for their function.

Important: This step is essential, because only in this way can the optimum function of the relined, implant-borne denture Titanmagnetics® be ensured. Unremoved plastic residue may damage the Titanmagnetics®/implant and therefore lead to failure.
<table>
<thead>
<tr>
<th>EDENTULOUS: TITANMAGNETICS®</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Choice of implant</th>
<th>Solid screw implant Ø 4.1 mm, 4.8 mm; shoulder Ø 4.8 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion of abutment</td>
<td></td>
</tr>
<tr>
<td>Titanmagnetics® insert</td>
<td>Titanmagnetics® insert applicator</td>
</tr>
<tr>
<td>048.511</td>
<td>046.146</td>
</tr>
<tr>
<td></td>
<td>Ratchet</td>
</tr>
<tr>
<td></td>
<td>046.119</td>
</tr>
<tr>
<td></td>
<td>with torque control device</td>
</tr>
<tr>
<td></td>
<td>046.049</td>
</tr>
<tr>
<td>Impression procedure</td>
<td></td>
</tr>
<tr>
<td>Titanmagnetics® impression cap</td>
<td></td>
</tr>
<tr>
<td>048.014</td>
<td></td>
</tr>
<tr>
<td>Production of master cast</td>
<td></td>
</tr>
<tr>
<td>Titanmagnetics® model implant</td>
<td></td>
</tr>
<tr>
<td>048.121</td>
<td></td>
</tr>
<tr>
<td>Production of superstructure</td>
<td></td>
</tr>
<tr>
<td>Positioning cuff</td>
<td></td>
</tr>
<tr>
<td>048.516</td>
<td></td>
</tr>
<tr>
<td>Denture Titanmagnetics®</td>
<td></td>
</tr>
<tr>
<td>048.515</td>
<td></td>
</tr>
</tbody>
</table>
TITANMAGNETICS®

<table>
<thead>
<tr>
<th>Art. No.</th>
<th>Article</th>
<th>Dimension</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>048.511</td>
<td>Titanmagnetics® insert (abutment)</td>
<td>height 3.25 mm, Ø 4.8 mm</td>
<td>titanium housing</td>
</tr>
<tr>
<td>046.146</td>
<td>Titanmagnetics® insert applicator</td>
<td>height 18.0 mm</td>
<td>titanium housing</td>
</tr>
<tr>
<td>048.014</td>
<td>Titanmagnetics® impression cap</td>
<td>height 7.0 mm</td>
<td>titanium housing</td>
</tr>
<tr>
<td>048.121</td>
<td>Titanmagnetics® model implant</td>
<td>height 9.0 mm</td>
<td>titanium housing</td>
</tr>
<tr>
<td>048.516</td>
<td>Positioning cuff</td>
<td>height 0.3 mm, Ø 15.0 mm</td>
<td>dental silicone</td>
</tr>
<tr>
<td>048.515</td>
<td>Titanmagnetics® Denture magnet</td>
<td>height 2.65 mm, Ø 4.8 mm</td>
<td>titanium housing</td>
</tr>
</tbody>
</table>

Note: Titanmagnetics® are not available in all countries.
Cerny R.
The biological effects of implanted magnetic fields

Jäger K., Wirz J.
Unterkiefer-Hybridprothesen mit vier Implantaten.
Eine In-vitro-Spannungsanalyse

Wirz J., Jäger K., Schmidli F.
Magnetverankerte (implantatgesicherte) Totalprothesen –
Ein Beitrag zur Altersprothetik

Tiller R. et al.
Das implantatgetragene Magnetattachment – eine sinnvolle Alternative in der Hybridprothetik

Stemmann, H. und Stemmann, H. jun.
Behandlung mit magnetretiniertes Implantatprothetik – ein Fallbericht

Vesper M. et al.
Titanmagnetics® als Hilfsmittel zur Verankerung bei anatomisch schwieriger Situation im Oberkiefer

Wirz J., Lopez S., Schmidli F.
Magnetverankerungen auf Implantaten
Teil I: Bestandsaufnahme
Quintessenz 4, 579–588 (1993)

Wirz J., Lopez S., Schmidli F.
Magnetverankerungen auf Implantaten
Teil II: Korrosionsverhalten
Quintessenz 5, 737–749 (1993)

Wirz J., Jäger K., Schmidli F.
Magnetverankerungen auf Implantaten
Teil III: Schlussfolgerungen und klinische Empfehlungen
Quintessenz 6, 891–898 (1993)

Wirz J.
Titan – der Werkstoff für die Teil- und Hybridprothetik mit und ohne Implantate
Quintessenzverlag, Berlin (1997)
Please note
Practitioners must have appropriate knowledge and instruction in the handling of the Straumann CAD/CAM products or other Straumann products ("Straumann Products") for using the Straumann Products safely and properly in accordance with the instructions for use.

The Straumann Product must be used in accordance with the instructions for use provided by the manufacturer. It is the practitioner’s responsibility to use the device in accordance with these instructions for use and to determine, if the device fits to the individual patient situation.

The Straumann Products are part of an overall concept and must be used only in conjunction with the corresponding original components and instruments distributed by Institut Straumann AG, its ultimate parent company and all affiliates or subsidiaries of such parent company ("Straumann"), except if stated otherwise in this document or in the instructions for use for the respective Straumann Product. If use of products made by third parties is not recommended by Straumann in this document or in the respective instructions for use for use, any such use will void any warranty or other obligation, express or implied, of Straumann.

Availability
Some of the Straumann Products listed in this document may not be available in all countries.

Caution
In addition to the caution notes in this document, our products must be secured against aspiration when used intraorally.

Validity
Upon publication of this document, all previous versions are superseded.

Documentation
For detailed instructions on the Straumann Products contact your Straumann representative.

Copyright and trademarks
Straumann® documents may not be reprinted or published, in whole or in part, without the written authorization of Straumann. Straumann® and/or other trademarks and logos from Straumann® mentioned herein are the trademarks or registered trademarks of Straumann Holding AG and/or its affiliates.

Explanation of the symbols on labels and instruction leaflets

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOT</td>
<td>Batch code</td>
</tr>
<tr>
<td>REF</td>
<td>Catalogue number</td>
</tr>
<tr>
<td>STERILE</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td>Lower limit of temperature</td>
</tr>
<tr>
<td></td>
<td>Upper limit of temperature</td>
</tr>
<tr>
<td></td>
<td>Temperature limitation</td>
</tr>
<tr>
<td></td>
<td>Caution: Federal law restricts this device to sale by or on the order of a dental professional.</td>
</tr>
<tr>
<td></td>
<td>Do not reuse</td>
</tr>
<tr>
<td></td>
<td>Non-sterile</td>
</tr>
<tr>
<td></td>
<td>Caution, consult accompanying documents</td>
</tr>
<tr>
<td></td>
<td>Use by</td>
</tr>
<tr>
<td></td>
<td>Keep away from sunlight</td>
</tr>
<tr>
<td></td>
<td>Straumann Products with the CE mark fulfill the requirements of the Medical Devices Directive 93/42 EEC</td>
</tr>
<tr>
<td></td>
<td>Consult instructions for use</td>
</tr>
</tbody>
</table>