STEP-BY-STEP INSTRUCTIONS ON
TEMPORARY ABUTMENTS

Straumann® Temporary Abutments, VITA CAD-Temp®

COMMITTED TO
SIMPLY DOING MORE™
FOR DENTAL PROFESSIONALS
The ITI (International Team for Implantology) is academic partner of Institut Straumann AG in the areas of research and education.
CONTENTS

These instructions are applicable to RN, WN, RC, NC and NNC.

Temporary abutments

1. **Temporary abutment Wide Neck (WN) – Polymer with titanium alloy inlay**
 WN is used to represent Tissue Level lines. Instructions shown are applicable to all Tissue Level examples.
 1.1. Prosthetic procedure for temporary abutment WN

2. **Temporary abutment Regular Crossfit® (RC) – Polymer with titanium alloy inlay**
 RC is used to represent Bone Level lines. Instructions shown are applicable to all Bone Level examples.
 2.1. Prosthetic procedure for temporary abutment RC
1. TEMPORARY ABUTMENT WIDE NECK (WN) – POLYMER WITH TITANIUM ALLOY INLAY

Intended use
- Individual soft tissue management for esthetic cases
- Screw- or cement-retained temporary crowns
- Cement-retained temporary bridges

Characteristics

Simple
- Polymer material allows for easy and quick chair-side modification
- Easy-to-achieve esthetics due to tooth-colored and modifiable polymer material

Reliable
- Precise implant-abutment fit and high stability due to reinforcement with titanium alloy inlay

Note
Do not use for longer than 6 months. Place temporary restoration out of occlusion.

- The devices are provided non-sterile and are for single use only.
- The abutment must be secured against aspiration. The abutments can be processed with cleaning/disinfecting agents such as Ethanol, Tego Cid 2%, Micro 10 + 4%, Cidex OPA pure and Grotanat 2%.
- The abutment can be steam-sterilized (121°C for 20 minutes).
1.1. PROSTHETIC PROCEDURE FOR TEMPORARY ABUTMENT WN

Option A: Screw-retained temporary crown

Step 1 – Individualization - Removing material
Individualize the temporary abutment on an analog according to the mouth situation. Fine-cut tungsten carbide tools are recommended for processing this polymer material.

Insertion in master model
Hand-tighten the temporary abutment in the implant/implant analog with the SCS screwdriver and temporarily seal the screw channel [e.g. with cotton].

Modification of abutments – How far to reduce the dimensions

<table>
<thead>
<tr>
<th></th>
<th>NNC</th>
<th>NC</th>
<th>RN</th>
<th>WN</th>
<th>RC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 mm max</td>
<td>1 mm max</td>
<td>Area of possible</td>
<td>Area of possible</td>
<td>Area of possible</td>
</tr>
<tr>
<td>reduction</td>
<td>reduction</td>
<td>reduction</td>
<td>reduction</td>
<td>reduction</td>
<td>reduction</td>
</tr>
</tbody>
</table>

Red line indicates the area of maximum reduction

Note
Please refer to the graphics above for details on modification limits.

The temporary abutment height can be shortened with standard tools and techniques, but should not be reduced beyond the metal core. The **width must not be reduced** by more than 1 mm at the thickest part (NNC, NC) or further than the metal margin (RN, WN, RC).
Step 2 – Option A: Fabricating the temporary restoration – Direct veneering

Directly add the veneering material in order to fabricate the temporary restoration.

Step 2 – Option B: Fabricating the temporary restoration – Vacuum stents

Create the temporary restoration according to standard techniques (e.g. vacuum stents).

Note

Before adding up any material or performing corrections with veneering material (i.e. VITA VM® LC materials, refer to the manufacturer’s instructions), the surface of the temporary restorations must be cleaned and wetted with modeling liquid.

Note

Clean abutment with a steam jet.
Step 3 – Finishing
Remove excess acrylic, reopen the screw channel and finish the temporary restoration.

Note
Restorations made from VITA CAD-Temp® can be pre-polished with a suitable silicone polisher and a small goat-hair brush. Standard acrylic polishing agents that are also suitable for intraoral use are used for high luster polishing. Avoid creating excessive heat.

Important:
Careful polishing is absolutely necessary to achieve a natural looking result and to avoid plaque accumulation and related negative effects on the shade. Use a polishing aid or implant analog to protect the implant configuration while polishing the temporary restoration.

Step 4 – Final insertion
Clean and sterilize the polished temporary restoration (refer to the manufacturer’s instructions of the veneering material).

Place the temporary restoration on the implant and tighten the screw between 15 Ncm and 35 Ncm (depending on implant stability) using the SCS screwdriver along with the ratchet and the torque control device.
Option B: Cement-retained temporary crown

Step 1 – Individualization - Removing material
Individualize the temporary abutment on an analog according to the mouth situation. Fine-cut tungsten carbide tools are recommended for processing this polymer material.

Modification of abutments – How far to reduce the dimensions

<table>
<thead>
<tr>
<th>NNC</th>
<th>NC</th>
<th>RN</th>
<th>WN</th>
<th>RC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mm max reduction</td>
<td>1 mm max reduction</td>
<td>Area of possible reduction</td>
<td>Area of possible reduction</td>
<td>Area of possible reduction</td>
</tr>
</tbody>
</table>

Note
Please refer to the graphics above for details on modification limits.

The temporary abutment height can be shortened with standard tools and techniques, but should not be reduced beyond the metal core. The width must not be reduced by more than 1 mm at the thickest part (NNC, NC) or further than the metal margin (RN, WN, RC).
Step 2 – Fabricating the cement-retained temporary single crown
Use a standard procedure to fabricate the cement-retained single crown (e.g. grind out a prefabricated plastic tooth).

Step 3 – Final insertion
Clean and sterilize the polished temporary abutment.

Place the customized temporary abutment on the implant and tighten the screw between 15 Ncm and 35 Ncm (depending on implant stability) using the SCS screwdriver along with the ratchet and the torque control device.
Cover the screw head with absorbent cotton or gutta-percha and seal the screw channel temporarily (e.g. with absorbent cotton).

Step 4 – Cementing the temporary single crown

Coat the internal configuration of the crown with temporary cement and cement it on the temporary abutment.
2. TEMPORARY ABUTMENT REGULAR CROSSFIT® (RC) – POLYMER WITH TITANIUM ALLOY INLAY

Intended use
- Individual soft tissue management for esthetic cases
- Screw- or cement-retained temporary crowns
- Cement-retained temporary bridges

Characteristics

Simple
- Polymer material allows for easy and quick chair-side modification
- Easy-to-achieve esthetics due to tooth-colored and modifiable polymer material

Reliable
- Precise implant-abutment fit and high stability due to reinforcement with titanium alloy inlay
- CrossFit® Connection

Note
Do not use for longer than 6 months. Place temporary restoration out of occlusion.

- The devices are provided non-sterile and are for single use only.
- The abutment must be secured against aspiration. The abutments can be processed with cleaning/disinfecting agents such as Ethanol, Tego Cid 2%, Micro 10 + 4%, Cidex OPA pure and Grotanat 2%.
- The abutment can be steam-sterilized (121°C for 20 minutes).
2.1. PROSTHETIC PROCEDURE FOR TEMPORARY ABUTMENT RC

Option A: Screw-retained temporary crown

Step 1 – Individualization - Removing material
Individualize the temporary abutment on an analog according to the mouth situation. Fine-cut tungsten carbide tools are recommended for processing this polymer material.

Insertion in master model
Hand-tighten the temporary abutment in the implant/implant analog with the SCS screwdriver and temporarily seal the screw channel (e.g. with cotton).

Modification of abutments – How far to reduce the dimensions

<table>
<thead>
<tr>
<th>NNC</th>
<th>NC</th>
<th>RN</th>
<th>WN</th>
<th>RC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mm max reduction</td>
<td>1 mm max reduction</td>
<td>Area of possible reduction</td>
<td>Area of possible reduction</td>
<td>Area of possible reduction</td>
</tr>
</tbody>
</table>

Red line indicates the area of maximum reduction

Note
Please refer to the graphics above for details on modification limits.

The temporary abutment height can be shortened with standard tools and techniques, but should not be reduced beyond the metal core. The **width must not be reduced** by more than 1 mm at the thickest part (NNC, NC) or further than the metal margin (RN, WN, RC).
Step 2 – Option A: Fabricating the temporary restoration – Direct veneering

Directly add the veneering material in order to fabricate the temporary restoration.

Step 2 – Option B: Fabricating the temporary restoration – Vacuum stents

Create the temporary restoration according to standard techniques (e.g. vacuum stents).

Note
Before adding up any material or performing corrections with veneering material (i.e. VITA VM® LC materials, refer to the manufacturer’s instructions), the surface of the temporary restorations must be cleaned and wetted with modeling liquid.

Note
Clean abutment with a steam jet.
Step 3 – Finishing
Remove excess acrylic, reopen the screw channel and finish the temporary restoration.

Note
Restorations made from VITA CAD-Temp® can be pre-polished with a suitable silicone polisher and a small goat-hair brush. Standard acrylic polishing agents that are also suitable for intraoral use are used for high luster polishing. Avoid creating excessive heat.

Important:
Careful polishing is absolutely necessary to achieve a natural looking result and to avoid plaque accumulation and related negative effects on the shade. Use a polishing aid or implant analog to protect the implant configuration while polishing the temporary restoration.

Step 4 – Final insertion
Clean and sterilize the polished temporary restoration (refer to the manufacturer’s instructions of the veneering material).

Place the temporary restoration on the implant and tighten the screw between 15 Ncm and 35 Ncm (depending on implant stability) using the SCS screwdriver along with the ratchet and the torque control device.
Option B: Cement-retained temporary crown

Step 1 – Individualization - Removing material
Individualize the temporary abutment on an analog according to the mouth situation. Fine-cut tungsten carbide tools are recommended for processing this polymer material.

Modification of abutments – How far to reduce the dimensions

<table>
<thead>
<tr>
<th>NNC</th>
<th>NC</th>
<th>RN</th>
<th>WN</th>
<th>RC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Red line indicates the area of maximum reduction

Note
Please refer to the graphics above for details on modification limits.

The temporary abutment height can be shortened with standard tools and techniques, but should not be reduced beyond the metal core. The **width must not be reduced** by more than 1 mm at the thickest part (NNC, NC) or further than the metal margin (RN, WN, RC).
Step 2 – Fabricating the cement-retained temporary single crown
Use a standard procedure to fabricate the cement-retained single crown (e.g. grind out a prefabricated plastic tooth).

Step 3 – Final insertion
Clean and sterilize the polished temporary abutment.
Place the customized temporary abutment on the implant and tighten the screw between 15 Ncm and 35 Ncm (depending on implant stability) using the SCS screwdriver along with the ratchet and the torque control device.
Cover the screw head with absorbent cotton or gutta-percha and seal the screw channel temporarily (e.g. with absorbent cotton).

Step 4 – Cementing the temporary single crown
Coat the internal configuration of the crown with temporary cement and cement it on the temporary abutment.